{ "id": "2202.12523", "version": "v1", "published": "2022-02-25T06:54:18.000Z", "updated": "2022-02-25T06:54:18.000Z", "title": "Special triple covers of algebraic surfaces", "authors": [ "Nicolina Istrati", "Piotr Pokora", "Sönke Rollenske" ], "comment": "26 pages", "categories": [ "math.AG" ], "abstract": "We study special triple covers $f\\colon T \\to S$ of algebraic surfaces, where the Tschirnhausen bundle $\\mathcal E = \\left(f_*\\mathcal O_T/\\mathcal O_S\\right)^\\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.", "revisions": [ { "version": "v1", "updated": "2022-02-25T06:54:18.000Z" } ], "analyses": { "subjects": [ "14J10", "14J29" ], "keywords": [ "algebraic surfaces", "study special triple covers", "special triple planes", "nice families", "tschirnhausen bundle" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }