{ "id": "2202.12366", "version": "v1", "published": "2022-02-24T21:13:36.000Z", "updated": "2022-02-24T21:13:36.000Z", "title": "Bredon motivic cohomology of the complex numbers", "authors": [ "Jeremiah Heller", "Mircea Voineagu", "Paul Arne Østvær" ], "comment": "20 pages, 3 figures", "categories": [ "math.AG", "math.AT", "math.KT" ], "abstract": "Over the complex numbers, we compute the $C_2$-equivariant Bredon motivic cohomology ring with $\\mathbb{Z}/2$ coefficients. By rigidity, this extends Suslin's calculation of the motivic cohomology ring of algebraically closed fields of characteristic zero to the $C_2$-equivariant motivic setting.", "revisions": [ { "version": "v1", "updated": "2022-02-24T21:13:36.000Z" } ], "analyses": { "subjects": [ "14F42", "55P91" ], "keywords": [ "complex numbers", "equivariant bredon motivic cohomology ring", "extends suslins calculation", "characteristic zero", "equivariant motivic" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }