{ "id": "2202.11815", "version": "v1", "published": "2022-02-23T22:35:59.000Z", "updated": "2022-02-23T22:35:59.000Z", "title": "Polynomial effective equidistribution", "authors": [ "Elon Lindenstrauss", "Amir Mohammadi", "Zhiren Wang" ], "comment": "16 pages", "categories": [ "math.DS", "math.GT", "math.NT" ], "abstract": "We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\\operatorname{SL}_2(\\mathbb R)$ in arithmetic quotients of $\\operatorname{SL}_2(\\mathbb C)$ and $\\operatorname{SL}_2(\\mathbb R)\\times\\operatorname{SL}_2(\\mathbb R)$. The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.", "revisions": [ { "version": "v1", "updated": "2022-02-23T22:35:59.000Z" } ], "analyses": { "keywords": [ "polynomial effective equidistribution", "polynomial error rate", "unipotent subgroups", "effective equidistribution theorems", "arithmetic quotients" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }