{ "id": "2202.11627", "version": "v1", "published": "2022-02-23T17:04:39.000Z", "updated": "2022-02-23T17:04:39.000Z", "title": "Dyck paths with catastrophes modulo the positions of a given pattern", "authors": [ "Jean-Luc Baril", "Sergey Kirgizov", "Armen Petrossian" ], "comment": "23 pages, 14 figures, 1 table", "categories": [ "math.CO", "cs.DM" ], "abstract": "For any pattern $p$ of length at most two, we provide generating functions and asymptotic approximations for the number of $p$-equivalence classes of Dyck paths with catastrophes, where two paths of the same length are $p$-equivalent whenever the positions of the occurrences of the pattern $p$ are the same.", "revisions": [ { "version": "v1", "updated": "2022-02-23T17:04:39.000Z" } ], "analyses": { "keywords": [ "dyck paths", "catastrophes modulo", "asymptotic approximations", "equivalence classes" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }