{ "id": "2202.11404", "version": "v1", "published": "2022-02-23T10:34:57.000Z", "updated": "2022-02-23T10:34:57.000Z", "title": "Exceptional sets for average conformal dynamical systems", "authors": [ "Congcong Qu", "Juan Wang" ], "comment": "33 pages", "categories": [ "math.DS" ], "abstract": "Let $f: M \\to M$ be a $C^{1+\\alpha}$ map/diffeomorphism of a compact Riemannian manifold $M$ and $\\mu$ be an expanding/hyperbolic ergodic $f$-invariant Borel probability measure on $M$. Assume $f$ is average conformal expanding/hyperbolic on the support set $W$ of $\\mu$ and $W$ is locally maximal. For any subset $A\\subset W$ with small entropy or dimension, we investigate the topological entropy and Hausdorff dimensions of the $A$-exceptional set and the limit $A$-exceptional set.", "revisions": [ { "version": "v1", "updated": "2022-02-23T10:34:57.000Z" } ], "analyses": { "subjects": [ "37C45", "37B40", "37D25", "37F35" ], "keywords": [ "average conformal dynamical systems", "exceptional set", "invariant borel probability measure", "compact riemannian manifold", "average conformal expanding/hyperbolic" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }