{ "id": "2202.10257", "version": "v2", "published": "2022-02-21T14:22:28.000Z", "updated": "2023-04-27T16:25:46.000Z", "title": "$S$-integral quadratic forms and homogeneous dynamics", "authors": [ "Irving Calderón" ], "comment": "We add in the introduction a discussion of the extension of the results to any number field. Some misprints corrected", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $S = \\{ \\infty \\} \\cup S_f$ be a finite set of places of $\\mathbb{Q}$. Using homogeneous dynamics, we establish two new quantitative and explicit results about integral quadratic forms in three or more variables: The first is a criterion of $S$-integral equivalence. The second determines a finite generating set of any $S$-integral orthogonal group. Both theorems--which extend results of H. Li and G. Margulis for $S = \\{ \\infty\\}$--are given by polynomial bounds on the size of the coefficients of the quadratic forms.", "revisions": [ { "version": "v2", "updated": "2023-04-27T16:25:46.000Z" } ], "analyses": { "subjects": [ "11E12", "37A17", "11E08", "11H55", "37A25" ], "keywords": [ "integral quadratic forms", "homogeneous dynamics", "integral orthogonal group", "theorems-which extend results", "explicit results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }