{ "id": "2202.10167", "version": "v2", "published": "2022-02-21T12:23:33.000Z", "updated": "2022-05-31T10:02:37.000Z", "title": "On another characterization of Askey-Wilson polynomials", "authors": [ "D. Mbouna", "A. Suzuki" ], "comment": "arXiv admin note: text overlap with arXiv:2103.05742", "categories": [ "math.CA" ], "abstract": "In this paper we show that the only sequences of orthogonal polynomials $(P_n)_{n\\geq 0}$ satisfying \\begin{align*} \\phi(x)\\mathcal{D}_q P_{n}(x)=a_n\\mathcal{S}_q P_{n+1}(x) +b_n\\mathcal{S}_q P_n(x) +c_n\\mathcal{S}_q P_{n-1}(x), \\end{align*} ($c_n\\neq 0$) where $\\phi$ is a well chosen polynomial of degree at most two, $\\mathcal{D}_q$ is the Askey-Wilson operator and $\\mathcal{S}_q$ the averaging operator, are the multiple of Askey-Wilson polynomials, or specific or limiting cases of them.", "revisions": [ { "version": "v2", "updated": "2022-05-31T10:02:37.000Z" } ], "analyses": { "keywords": [ "askey-wilson polynomials", "characterization", "askey-wilson operator", "orthogonal polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }