{ "id": "2202.07985", "version": "v1", "published": "2022-02-16T10:55:11.000Z", "updated": "2022-02-16T10:55:11.000Z", "title": "Irreducible Integrable Modules for the full Toroidal Lie Algebras co-ordinated by Rational Quantum Torus", "authors": [ "Santanu Tantubay", "Punita Batra" ], "comment": "20 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathbb{C}_q$ be a non-commutative Laurent polynomial ring associated with a $(n+1)\\times (n+1)$ rational quantum matrix $q$. Let $\\mathfrak{sl}_d(\\mathbb{C}_q)\\oplus HC_1(\\mathbb{C}_q)$ be the universal central extension of Lie subalgebra $\\mathfrak{sl}_d(\\mathbb{C}_q)$ of $\\mathfrak{gl}_d(\\mathbb{C}_q)$. Now let us take the Lie algebra $\\tau=\\mathfrak{gl}_d(\\mathbb{C}_q)\\oplus HC_1(\\mathbb{C}_q)$. Let $Der(\\mathbb{C}_q)$ be the Lie algebra of all derivations of $\\mathbb{C}_q$. Now we consider the Lie algebra $\\tilde{\\tau}=\\tau\\rtimes Der(\\mathbb{C}_q)$, called as full toroidal Lie algebra co-ordinated by rational quantum tori. In this paper we get a classification of irreducible integrable modules with finite dimensional weight spaces for $\\tilde{\\tau}$ with nonzero central action on the modules.", "revisions": [ { "version": "v1", "updated": "2022-02-16T10:55:11.000Z" } ], "analyses": { "subjects": [ "17B65", "17B66" ], "keywords": [ "full toroidal lie algebra", "rational quantum torus", "irreducible integrable modules", "laurent polynomial ring", "finite dimensional weight spaces" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }