{ "id": "2202.07898", "version": "v1", "published": "2022-02-16T07:04:11.000Z", "updated": "2022-02-16T07:04:11.000Z", "title": "Weighted estimates for bilinear fractional integral operator on the Heisenberg group", "authors": [ "Abhishek Ghosh", "Rajesh K. Singh" ], "categories": [ "math.CA" ], "abstract": "In this article, we introduce an analogue of Kenig and Stein's bilinear fractional integral operator on the Heisenberg group $\\mathbb{H}^n$. We completely characterize exponents $\\alpha, \\beta$ and $\\gamma$ such that the operator is bounded from $L^{p}(\\mathbb{H}^n, |x|^{\\alpha p})\\times L^{q}(\\mathbb{H}^n, |x|^{\\beta q})$ to $L^{r}(\\mathbb{H}^n, |x|^{-\\gamma r})$.", "revisions": [ { "version": "v1", "updated": "2022-02-16T07:04:11.000Z" } ], "analyses": { "keywords": [ "heisenberg group", "weighted estimates", "steins bilinear fractional integral operator", "characterize exponents" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }