{ "id": "2202.07694", "version": "v1", "published": "2022-02-15T19:52:14.000Z", "updated": "2022-02-15T19:52:14.000Z", "title": "A short note on a theorem by Eliahou and Fromentin", "authors": [ "Matheus Bernardini", "Patrick Melo" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "In this note, we give an alternative proof for a theorem by Eliahou and Fromentin, which exhibit a remarkable property of the sequence $(n'_g)$, where $n'_g$ denotes the number of gapsets with genus $g$ and depth at most $3$.", "revisions": [ { "version": "v1", "updated": "2022-02-15T19:52:14.000Z" } ], "analyses": { "keywords": [ "short note", "alternative proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }