{ "id": "2202.07641", "version": "v1", "published": "2022-02-15T18:40:08.000Z", "updated": "2022-02-15T18:40:08.000Z", "title": "The $L^p$ convergence of Fourier series on triangular domains", "authors": [ "Ryan Luis Acosta Babb" ], "comment": "21 pages, 6 figures", "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "We prove $L^p$ norm convergence for (appropriate truncations of) the Fourier series arising from the Dirichlet Laplacian eigenfunctions on three types of triangular domains in $\\mathbb{R}^2$: (i) the 45-90-45 triangle, (ii) the equilateral triangle and (iii) the hemiequilateral triangle (i.e. half an equilateral triangle cut along its height). The limitations of our argument to these three types are discussed in light of Lam\\'e's Theorem.", "revisions": [ { "version": "v1", "updated": "2022-02-15T18:40:08.000Z" } ], "analyses": { "subjects": [ "42B08", "42B05", "34L10", "35P10", "42A10" ], "keywords": [ "triangular domains", "fourier series", "equilateral triangle cut", "dirichlet laplacian eigenfunctions", "appropriate truncations" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }