{ "id": "2202.06910", "version": "v1", "published": "2022-02-14T18:02:34.000Z", "updated": "2022-02-14T18:02:34.000Z", "title": "Equidistribution for matings of quadratic maps with the Modular group", "authors": [ "Vanessa Matus de la Parra" ], "categories": [ "math.DS" ], "abstract": "We study the asymptotic behavior of the family of holomorphic correspondences $\\lbrace\\mathcal{F}_a\\rbrace_{a\\in\\mathcal{K}}$, given by $$\\left(\\frac{az+1}{z+1}\\right)^2+\\left(\\frac{az+1}{z+1}\\right)\\left(\\frac{aw-1}{w-1}\\right)+\\left(\\frac{aw-1}{w-1}\\right)^2=3.$$ It was proven by Bullet and Lomonaco that $\\mathcal{F}_a$ is a mating between the modular group $\\operatorname{PSL}_2(\\mathbb{Z})$ and a quadratic rational map. We show for every $a\\in\\mathcal{K}$, the iterated images and preimages under $\\mathcal{F}_a$ of nonexceptional points equidistribute, in spite of the fact that $\\mathcal{F}_a$ is weakly-modular in the sense of Dinh, Kaufmann and Wu but it is not modular. Furthermore, we prove that periodic points equidistribute as well.", "revisions": [ { "version": "v1", "updated": "2022-02-14T18:02:34.000Z" } ], "analyses": { "keywords": [ "modular group", "quadratic maps", "equidistribution", "periodic points equidistribute", "nonexceptional points equidistribute" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }