{ "id": "2202.06586", "version": "v1", "published": "2022-02-14T10:12:47.000Z", "updated": "2022-02-14T10:12:47.000Z", "title": "Continuum limit of the lattice quantum graph Hamiltonian", "authors": [ "Pavel Exner", "Shu Nakamura", "Yukihide Tadano" ], "categories": [ "math-ph", "math.FA", "math.MP" ], "abstract": "We consider the quantum graph Hamiltonian on the square lattice in Euclidean space, and we show that the spectrum of the Hamiltonian converges to the corresponding Schr\\\"odinger operator on the Euclidean space in the continuum limit, and that the corresponding eigenfunctions and eigenprojections also converge in some sense. We employ the discrete Schr\\\"odinger operator as the intermediate operator, and we use a recent result by the second and third author on the continuum limit of the discrete Schr\\\"odinger operator.", "revisions": [ { "version": "v1", "updated": "2022-02-14T10:12:47.000Z" } ], "analyses": { "subjects": [ "47A10", "47A25", "47B39" ], "keywords": [ "lattice quantum graph hamiltonian", "continuum limit", "euclidean space", "third author", "intermediate operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }