{ "id": "2202.06304", "version": "v1", "published": "2022-02-13T12:59:17.000Z", "updated": "2022-02-13T12:59:17.000Z", "title": "Ill_posedness for a two_component Novikov system in Besov space", "authors": [ "Xing Wu", "Min Li" ], "categories": [ "math.AP" ], "abstract": "In this paper, we consider the Cauchy problem for a two-component Novikov system on the line. By specially constructed initial data $(\\rho_0, u_0)$ in $B_{p, \\infty}^{s-1}(\\mathbb{R})\\times B_{p, \\infty}^s(\\mathbb{R})$ with $s>\\max\\{2+\\frac{1}{p}, \\frac{5}{2}\\}$ and $1\\leq p \\leq \\infty$, we show that any energy bounded solution starting from $(\\rho_0, u_0)$ does not converge back to $(\\rho_0, u_0)$ in the metric of $B_{p, \\infty}^{s-1}(\\mathbb{R})\\times B_{p, \\infty}^s(\\mathbb{R})$ as time goes to zero, thus results in discontinuity of the data-to-solution map and ill-posedness.", "revisions": [ { "version": "v1", "updated": "2022-02-13T12:59:17.000Z" } ], "analyses": { "keywords": [ "besov space", "two-component novikov system", "specially constructed initial data", "cauchy problem", "data-to-solution map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }