{ "id": "2202.05077", "version": "v1", "published": "2022-02-10T15:01:36.000Z", "updated": "2022-02-10T15:01:36.000Z", "title": "Congruences for sums involving products of three binomial coefficients", "authors": [ "Zhi-Hong Sun" ], "comment": "50 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p>3$ be a prime, and let $a$ be a rational $p$-adic integer, using WZ method we establish the congruences modulo $p^3$ for $$\\sum_{k=0}^{p-1} \\binom ak\\binom{-1-a}k\\binom{2k}k\\frac {w(k)}{4^k},$$ where $$w(k)=1,\\frac 1{k+1},\\frac 1{(k+1)^2},\\frac 1{(k+1)^3},\\frac 1{2k-1},\\frac 1{k+2}, k,k^2,k^3,\\frac 1{a+k},\\frac 1{a+k-1}.$$ As consequences, taking $a=-\\frac 12,-\\frac 13,-\\frac 14,-\\frac 16$ we deduce many congruences modulo $p^3$ and so solve some conjectures posed by the author earlier.", "revisions": [ { "version": "v1", "updated": "2022-02-10T15:01:36.000Z" } ], "analyses": { "subjects": [ "11A07", "05A19", "11B65", "11B68", "11E25" ], "keywords": [ "binomial coefficients", "congruences modulo", "wz method", "author earlier", "adic integer" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }