{ "id": "2202.04649", "version": "v1", "published": "2022-02-09T16:41:28.000Z", "updated": "2022-02-09T16:41:28.000Z", "title": "A bijection for Delannoy paths", "authors": [ "David Callan" ], "comment": "4 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We exhibit a bijection between central Delannoy $n$-paths, that is, lattice paths from the origin to $(n,n)$ with steps $E=(1,0), \\,N=(0,1),\\,D=(1,1)$ and the lattice paths from the origin to $(n+1,n)$ where the only restriction on the steps is that they have finite nonnegative slope.", "revisions": [ { "version": "v1", "updated": "2022-02-09T16:41:28.000Z" } ], "analyses": { "subjects": [ "05A15" ], "keywords": [ "delannoy paths", "lattice paths", "central delannoy" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }