{ "id": "2202.04534", "version": "v1", "published": "2022-02-09T15:58:06.000Z", "updated": "2022-02-09T15:58:06.000Z", "title": "Small ball probabilities for the stochastic heat equation with colored noise", "authors": [ "Jiaming Chen" ], "comment": "26 pages", "categories": [ "math.PR" ], "abstract": "We consider a stochastic heat equation on the 1-dimensional torus $\\mathbb{T}:=[-1,1]$ with periodic boundary conditions: $$\\partial_t u(t,x)=\\partial^2_x u(t,x)+\\sigma(t,x,u)\\dot{F}(t,x),\\quad x\\in \\mathbb{T},t\\in\\mathbb{R}^+$$ and $\\dot{F}(t,x)$ is 2-parameter 1-dimensional white in time, colored in space noise. We assume that $\\sigma$ is Lipschitz in $u$ and uniformly elliptic. We prove small ball probabilities for the solution $u$ when $u(0,x)\\equiv 0$.", "revisions": [ { "version": "v1", "updated": "2022-02-09T15:58:06.000Z" } ], "analyses": { "subjects": [ "60H15" ], "keywords": [ "stochastic heat equation", "small ball probabilities", "colored noise", "periodic boundary conditions", "space noise" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }