{ "id": "2202.03145", "version": "v1", "published": "2022-01-21T18:07:05.000Z", "updated": "2022-01-21T18:07:05.000Z", "title": "Jensen-type inequalities for convex and $m$-convex functions via fractional calculus", "authors": [ "Yamilet Quintana", "José M. Rodríguez", "José M. Sigarreta Almira" ], "categories": [ "math.CA" ], "abstract": "In particular, Jensen's inequality, one of the most famous inequalities, plays a main role in the study of the existence and uniqueness of initial and boundary value problems for differential equations. In this work we prove some new Jensen-type inequalities for $m$-convex functions, and we apply them to generalized Riemann-Liouville-type integral operators. It is remarkable that, if we consider $m=1$, we obtain new inequalities for convex functions.", "revisions": [ { "version": "v1", "updated": "2022-01-21T18:07:05.000Z" } ], "analyses": { "subjects": [ "26A33", "26A51", "26D15" ], "keywords": [ "convex functions", "jensen-type inequalities", "fractional calculus", "boundary value problems", "generalized riemann-liouville-type integral operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }