{ "id": "2202.03113", "version": "v1", "published": "2022-02-07T12:46:53.000Z", "updated": "2022-02-07T12:46:53.000Z", "title": "Approximation by Fourier sums in classes of Weyl--Nagy differentiable functions with high exponent of smoothness", "authors": [ "A. S. Serdyuk", "I. V. Sokolenko" ], "comment": "16 pages, in Russian language", "categories": [ "math.CA" ], "abstract": "We establish asymptotic estimates for the least upper bounds of approximations in the uniform metric by Fourier sums of order $n-1$ of classes of $2\\pi$-periodic Weyl--Nagy differentiable functions, $W^r_{\\beta,p}, 1\\le p\\le \\infty, \\beta\\in\\mathbb{R},$ for high exponents of smoothness $r\\ (r-1\\ge \\sqrt{n})$. We obtain similar estimates in metrics of the spaces $L_p, 1\\le p\\le\\infty,$ for functional classes $W^r_{\\beta,1}$.", "revisions": [ { "version": "v1", "updated": "2022-02-07T12:46:53.000Z" } ], "analyses": { "keywords": [ "fourier sums", "high exponent", "approximation", "smoothness", "periodic weyl-nagy differentiable functions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "ru", "license": "arXiv", "status": "editable" } } }