{ "id": "2202.03111", "version": "v1", "published": "2022-02-07T12:46:21.000Z", "updated": "2022-02-07T12:46:21.000Z", "title": "Symmetry and inverse-closedness of some $p$-Beurling algebras", "authors": [ "Prakash A. Dabhi", "Karishman B. Solanki" ], "categories": [ "math.FA" ], "abstract": "Let $(G,d)$ be a metric space with the counting measure $\\mu$ satisfying some growth conditions. Let $\\omega(x,y)=(1+d(x,y))^\\delta$ for some $0<\\delta\\leq1$. Let $0