{ "id": "2202.02707", "version": "v1", "published": "2022-02-06T04:58:41.000Z", "updated": "2022-02-06T04:58:41.000Z", "title": "On the local existence of solutions to the Navier-Stokes-wave system with a free interface", "authors": [ "Igor Kukavica", "Linfeng Li", "Amjad Tuffaha" ], "comment": "30 pages", "categories": [ "math.AP" ], "abstract": "We address a system of equations modeling a compressible fluid interacting with an elastic body in dimension three. We prove the local existence and uniqueness of a strong solution when the initial velocity belongs to the space $H^{2+\\epsilon}$ and the initial structure velocity is in $H^{1.5+\\epsilon}$ , where $\\epsilon \\in (0, 1/2)$.", "revisions": [ { "version": "v1", "updated": "2022-02-06T04:58:41.000Z" } ], "analyses": { "keywords": [ "local existence", "free interface", "navier-stokes-wave system", "initial structure velocity", "initial velocity belongs" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }