{ "id": "2202.01688", "version": "v1", "published": "2022-02-03T16:55:46.000Z", "updated": "2022-02-03T16:55:46.000Z", "title": "On upper bounds for the first $\\ell^2$-Betti number", "authors": [ "Carsten Feldkamp", "Steffen Kionke" ], "comment": "10 pages, comments welcome", "categories": [ "math.GR" ], "abstract": "This article presents a method for proving upper bounds for the first $\\ell^2$-Betti number of groups using only the geometry of the Cayley graph. As an application we prove that Burnside groups of large prime exponent have vanishing first $\\ell^2$-Betti number. Our approach extends to generalizations of $\\ell^2$-Betti numbers, that are defined using characters. We illustrate this flexibility by generalizing results of Thom-Peterson on q-normal subgroups to this setting.", "revisions": [ { "version": "v1", "updated": "2022-02-03T16:55:46.000Z" } ], "analyses": { "subjects": [ "20F05", "20F50", "20F69" ], "keywords": [ "betti number", "large prime exponent", "q-normal subgroups", "burnside groups", "proving upper bounds" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }