{ "id": "2202.00920", "version": "v1", "published": "2022-02-02T09:03:22.000Z", "updated": "2022-02-02T09:03:22.000Z", "title": "The complexity of a numerical semigroup", "authors": [ "J. I. García-García", "M. A. Moreno-Frías", "J. C. Rosales", "A. Vigneron-Tenorio" ], "categories": [ "math.NT" ], "abstract": "Let $S$ and $\\Delta$ be numerical semigroups. A numerical semigroup $S$ is an $\\mathbf{I}(\\Delta)$-{\\it semigroup} if $S\\backslash \\{0\\}$ is an ideal of $\\Delta$. We will denote by $\\mathcal{J}(\\Delta)=\\{S \\mid S \\text{ is an $\\mathbf{I}(\\Delta)$-semigroup} \\}.$ We will say that $\\Delta$ is {\\it an ideal extension of } $S$ if $S\\in \\mathcal{J}(\\Delta).$ In this work, we present an algorithm that allows to build all the ideal extensions of a numerical semigroup. We can recursively denote by $\\mathcal{J}^0(\\mathbb{N})=\\mathbb{N},$ $\\mathcal{J}^1(\\mathbb{N})=\\mathcal{J}(\\mathbb{N})$ and $\\mathcal{J}^{k+1}(\\mathbb{N})=\\mathcal{J}(\\mathcal{J}^{k}(\\mathbb{N}))$ for all $k\\in \\mathbb{N}.$ The complexity of a numerical semigroup $S$ is the minimun of the set $\\{k\\in \\mathbb{N}\\mid S \\in \\mathcal{J}^k(\\mathbb{N})\\}.$ In addition, we will give an algorithm that allows us to compute all the numerical semigroups with fixed multiplicity and complexity.", "revisions": [ { "version": "v1", "updated": "2022-02-02T09:03:22.000Z" } ], "analyses": { "keywords": [ "numerical semigroup", "complexity", "ideal extension", "recursively denote" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }