{ "id": "2202.00238", "version": "v1", "published": "2022-02-01T06:33:52.000Z", "updated": "2022-02-01T06:33:52.000Z", "title": "$\\mathfrak{gl}(1 \\vert 1)$-Alexander polynomial for $3$-manifolds", "authors": [ "Yuanyuan Bao", "Noboru Ito" ], "comment": "18 pages. Comments are welcome", "categories": [ "math.GT" ], "abstract": "As an extension of Reshetikhin and Turaev's invariant, Costantino, Geer and Patureau-Mirand constructed $3$-manifold invariants in the setting of relative $G$-modular categories, which include both semisimple and non-semisimple ribbon tensor categories as examples. In this paper, we follow their method to construct a $3$-manifold invariant from Viro's $\\mathfrak{gl}(1\\vert 1)$-Alexander polynomial. We take lens spaces $L(7, 1)$ and $L(7, 2)$ as examples to show that this invariant can distinguish homotopy equivalent manifolds.", "revisions": [ { "version": "v1", "updated": "2022-02-01T06:33:52.000Z" } ], "analyses": { "subjects": [ "57K10", "57K16", "57K31" ], "keywords": [ "alexander polynomial", "non-semisimple ribbon tensor categories", "manifold invariant", "distinguish homotopy equivalent manifolds", "turaevs invariant" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }