{ "id": "2201.12974", "version": "v1", "published": "2022-01-31T03:01:35.000Z", "updated": "2022-01-31T03:01:35.000Z", "title": "Dimensions of certain sets of continued fractions with non-decreasing partial quotients", "authors": [ "Lulu Fang", "Jihua Ma", "Kunkun Song", "Min Wu" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Let $[a_1(x),a_2(x),a_3(x),\\cdots]$ be the continued fraction expansion of $x\\in (0,1)$. This paper is concerned with certain sets of continued fractions with non-decreasing partial quotients. As a main result, we obtain the Hausdorff dimension of the set \\[\\left\\{x\\in(0,1): a_1(x)\\leq a_2(x)\\leq \\cdots,\\ \\limsup\\limits_{n\\to\\infty}\\frac{\\log a_n(x)}{\\psi(n)}=1\\right\\}\\] for any $\\psi:\\mathbb{N}\\rightarrow\\mathbb{R}^+$ satisfying $\\psi(n)\\to\\infty$ as $n\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2022-01-31T03:01:35.000Z" } ], "analyses": { "subjects": [ "11K50", "28A80" ], "keywords": [ "non-decreasing partial quotients", "main result", "hausdorff dimension", "continued fraction expansion" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }