{ "id": "2201.12821", "version": "v1", "published": "2022-01-30T14:06:02.000Z", "updated": "2022-01-30T14:06:02.000Z", "title": "A reciprocity on finite abelian groups involving zero-sum sequences II", "authors": [ "Mao-Sheng Li", "Hanbin Zhang" ], "comment": "16 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $G$ be a finite abelian group. For any positive integers $d$ and $m$, let $\\varphi_G(d)$ be the number of elements in $G$ of order $d$ and $\\mathsf M(G,m)$ be the set of all zero-sum sequences of length $m$. In this paper, for any finite abelian group $H$, we prove that $$|\\mathsf M(G,|H|)|=|\\mathsf M(H,|G|)|$$ if and only if $\\varphi_G(d)=\\varphi_H(d)$ for any $d|(|G|,|H|)$. We also consider an extension of this result to non-abelian groups in terms of invariant theory.", "revisions": [ { "version": "v1", "updated": "2022-01-30T14:06:02.000Z" } ], "analyses": { "keywords": [ "finite abelian group", "zero-sum sequences", "reciprocity", "non-abelian groups", "invariant theory" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }