{ "id": "2201.12104", "version": "v1", "published": "2022-01-28T13:23:16.000Z", "updated": "2022-01-28T13:23:16.000Z", "title": "Global and microlocal aspects of Dirac operators: propagators and Hadamard states", "authors": [ "Matteo Capoferri", "Simone Murro" ], "comment": "40 pages, 2 pictures", "categories": [ "math.AP", "math-ph", "math.DG", "math.MP" ], "abstract": "We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy-compact globally hyperbolic 4-manifolds. We realise the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals -- the positive and negative Dirac propagators -- global in space and in time, with distinguished complex-valued geometric phase functions. As applications, we relate the Cauchy evolution operators with the Feynman propagator and construct Cauchy surfaces covariances of quasifree Hadamard states.", "revisions": [ { "version": "v1", "updated": "2022-01-28T13:23:16.000Z" } ], "analyses": { "subjects": [ "35L45", "35Q41", "58J40", "53C50", "58J45", "81T05" ], "keywords": [ "dirac operator", "hadamard states", "cauchy evolution operator", "microlocal aspects", "complex-valued geometric phase functions" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }