{ "id": "2201.10156", "version": "v1", "published": "2022-01-25T08:00:02.000Z", "updated": "2022-01-25T08:00:02.000Z", "title": "Superdensity and bounded geodesics in moduli space", "authors": [ "Josh Southerland" ], "comment": "Comments welcome", "categories": [ "math.DS", "math.GT" ], "abstract": "Following Beck-Chen, we say a flow $\\phi_t$ on a metric space $(X, d)$ is superdense if there is a $c > 0$ such that for every $x \\in X$, and every $T>0$, the trajectory $\\{\\phi_t x\\}_{0 \\le t \\le cT}$ is $1/T$-dense in $X$. We show that a linear flow on a translation surface is superdense if and only if the associated Teichm\\\"uller geodesic is bounded. This generalizes work of Beck-Chen on lattice surfaces, and is reminiscent of work of Masur on unique ergodicity.", "revisions": [ { "version": "v1", "updated": "2022-01-25T08:00:02.000Z" } ], "analyses": { "subjects": [ "37E35", "30F30", "30F60" ], "keywords": [ "moduli space", "bounded geodesics", "superdensity", "metric space", "superdense" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }