{ "id": "2201.09771", "version": "v1", "published": "2022-01-24T16:01:10.000Z", "updated": "2022-01-24T16:01:10.000Z", "title": "Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems", "authors": [ "Antonio Giuseppe Grimaldi", "Erica Ipocoana" ], "categories": [ "math.AP" ], "abstract": "We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form \\begin{gather*} \\min \\biggl\\{ \\int_{\\Omega} F(x,w,Dw) d x \\ : \\ w \\in \\mathcal{K}_{\\psi}(\\Omega) \\biggr\\}, \\end{gather*} with $F$ double phase functional of the form \\begin{equation*} F(x,w,z)=b(x,w)(|z|^p+a(x)|z|^q), \\end{equation*} where $\\Omega$ is a bounded open subset of $\\mathbb{R}^n$, $\\psi \\in W^{1,p}(\\Omega)$ is a fixed function called \\textit{obstacle} and $\\mathcal{K}_{\\psi}(\\Omega)= \\{ w \\in W^{1,p}(\\Omega) : w \\geq \\psi \\ \\text{a.e. in} \\ \\Omega \\}$ is the class of admissible functions. Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property.", "revisions": [ { "version": "v1", "updated": "2022-01-24T16:01:10.000Z" } ], "analyses": { "subjects": [ "26A27", "49J40", "47J20" ], "keywords": [ "higher differentiability results", "double-phase obstacle problems", "besov space", "fractional differentiability property", "higher fractional differentiability properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }