{ "id": "2201.09641", "version": "v1", "published": "2022-01-24T12:52:08.000Z", "updated": "2022-01-24T12:52:08.000Z", "title": "On the dimension of certain sets araising in the base two expansion", "authors": [ "Jörg Neunhäuserer" ], "categories": [ "math.DS" ], "abstract": "We show that for the base two expansion \\[ x=\\sum_{i=1}^{\\infty}2^{-(d_{1}(x)+d_{2}(x)+\\dots+d_{i}(x))}\\] with $x\\in(0,1]$ and $d_{i}(x)\\in\\mathbb{N}$ the set $A=\\{x|\\lim_{i\\to\\infty}d_{i}(x)=\\infty\\}$ has Hausdorff dimension zero and set $B=\\{x|\\limsup_{i\\to\\infty}d_{i}(x)=\\infty\\}$ has Hausdorff dimension one. This result is strongly opposed to a result on the continued fraction expansion, here both sets have Hausdorff dimension $1/2$, see \\cite{[GO],[LU]}. In addition we will find a dimension spectrum with respect to the base two expansion in the set $B$.", "revisions": [ { "version": "v1", "updated": "2022-01-24T12:52:08.000Z" } ], "analyses": { "subjects": [ "11K55", "28A80" ], "keywords": [ "sets araising", "hausdorff dimension zero", "continued fraction expansion", "dimension spectrum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }