{ "id": "2201.08716", "version": "v1", "published": "2022-01-21T14:27:11.000Z", "updated": "2022-01-21T14:27:11.000Z", "title": "Blow-up phenomena for a chemotaxis system with flux limitation", "authors": [ "M. Marras", "S. Vernier-Piro", "T. Yokota" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "In this paper we consider nonnegative solutions of the following parabolic-elliptic cross-diffusion system \\begin{equation*} \\left\\{ \\begin{array}{l} \\begin{aligned} &u_t = \\Delta u - \\nabla(u f(|\\nabla v|^2 )\\nabla v), \\\\[6pt] &0= \\Delta v -\\mu + u , \\quad \\int_{\\Omega}v =0, \\ \\ \\mu := \\frac 1 {|\\Omega|} \\int_{\\Omega} u dx, \\\\[6pt] &u(x,0)= u_0(x), \\end{aligned} \\end{array} \\right. \\end{equation*} in $\\Omega \\times (0,\\infty)$, with $\\Omega$ a ball in $\\mathbb{R}^N$, $N\\geq 3$ under homogeneous Neumann boundary conditions and $f(\\xi) = (1+ \\xi)^{-\\alpha}$, $0<\\alpha < \\frac{N-2}{2(N-1)}$, which describes gradient-dependent limitation of cross diffusion fluxes. Under conditions on $f$ and initial data, we prove that a solution which blows up in finite time in $L^\\infty$-norm, blows up also in $L^p$-norm for some $p>1$. Moreover, a lower bound of blow-up time is derived. \\vskip.2truecm \\noindent{\\bf AMS Subject Classification }{Primary: 35B44; Secondary: 35Q92, 92C17.} \\vskip.2truecm \\noindent{\\bf Key Words:} finite-time blow-up; chemotaxis.", "revisions": [ { "version": "v1", "updated": "2022-01-21T14:27:11.000Z" } ], "analyses": { "subjects": [ "35B44", "35Q92", "92C17" ], "keywords": [ "blow-up phenomena", "chemotaxis system", "flux limitation", "ams subject classification", "parabolic-elliptic cross-diffusion system" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }