{ "id": "2201.08196", "version": "v1", "published": "2022-01-20T14:21:54.000Z", "updated": "2022-01-20T14:21:54.000Z", "title": "The wave speed of an FKPP equation with jumps via coordinated branching", "authors": [ "Tommaso Rosati", "András Tóbiás" ], "categories": [ "math.PR" ], "abstract": "We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed $ \\mathfrak{s}> 0 $ given by $\\frac{\\mathfrak{s}^{2}}{2} = \\int_{[0, 1]}\\frac{ \\log{(1 + y)}}{y} \\mathfrak{R}( \\mathrm d y)$ where $ \\mathfrak{R} $ is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.", "revisions": [ { "version": "v1", "updated": "2022-01-20T14:21:54.000Z" } ], "analyses": { "subjects": [ "60H15", "60J80", "35C07", "92D25" ], "keywords": [ "fkpp equation", "coordinated branching", "nonlinear selection driven", "poisson random measure", "branching brownian motions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }