{ "id": "2201.07723", "version": "v1", "published": "2022-01-19T17:02:44.000Z", "updated": "2022-01-19T17:02:44.000Z", "title": "Realization of Weyl groups by Ringel-Hall Lie algebras of preprojective algebras", "authors": [ "Fan Xu", "Fang Yang" ], "categories": [ "math.RT", "math.CT", "math.QA" ], "abstract": "Let $\\Lambda_Q$ be the preprojective algebra of a finite acyclic quiver $Q$ of non-Dynkin type and $D^b(rep^n \\Lambda_Q)$ be the bounded derived category of finite dimensional nilpotent $\\Lambda_Q$-modules. We define spherical twist functors over the root category $\\mathcal{R}_{\\Lambda_Q}$ of $D^b(rep^n \\Lambda_Q)$ and then realize the Weyl group associated to $Q$ as certain subquotient of the automorphism group of the Ringel-Hall Lie algebra $\\mathfrak{g}(\\mathcal{R}_{\\Lambda_Q})$ of $\\mathcal{R}_{\\Lambda_Q}$ induced by spherical twist functors. We also present a conjectural relation between certain Lie subalgebras of $\\mathfrak{g}(\\mathcal{R}_{\\Lambda_Q})$ and $\\mathfrak{g}(\\mathcal{R}_Q)$, where $\\mathfrak{g}(\\mathcal{R}_Q)$ is the Ringe-Hall Lie algebra associated to the root category $\\mathcal{R}_Q$ of $Q$.", "revisions": [ { "version": "v1", "updated": "2022-01-19T17:02:44.000Z" } ], "analyses": { "keywords": [ "ringel-hall lie algebra", "weyl group", "preprojective algebra", "root category", "realization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }