{ "id": "2201.07127", "version": "v2", "published": "2022-01-14T07:53:47.000Z", "updated": "2024-05-14T20:18:24.000Z", "title": "Concatenations of Terms of an Arithmetic Progression", "authors": [ "Florian Luca", "Bertrand Teguia Tabuguia" ], "comment": "Substantial revision of the previous version. 15 pages, 27 references", "categories": [ "math.CO", "cs.SC" ], "abstract": "Let $\\left(u(n)\\right)_{n\\in\\mathbb{N}}$ be an arithmetic progression of natural integers in base $b\\in\\mathbb{N}\\setminus \\{0,1\\}$. We consider the following sequences: $s(n)=\\overline{u(0)u(1)\\cdots u(n) }^b$ formed by concatenating the first $n+1$ terms of $\\left(u(n)\\right)_{n\\in\\mathbb{N}}$ in base $b$ from the right; $s_r(n) = \\overline{u(n)u(n-1)\\cdots u(0)}^b$; and $\\left(s_*(n)\\right)_{n\\in\\mathbb{N}}$, given by $s_*(0)=u(0)$, $s_*(n)=\\overline{s_r(n-1)s(n)}^b, n\\geq 1$. We construct explicit formulas for these sequences and use basic concepts of linear difference operators to prove they are not P-recursive (holonomic). We also present an alternative proof that follows directly from their definitions. We implemented $\\left(s(n)\\right)_{n\\in\\mathbb{N}}$ and $\\left(s_r(n)\\right)_{n\\in\\mathbb{N}}$ in the decimal base when $(u(n))_{n\\in\\mathbb{N}}=\\mathbb{N}\\setminus \\{0\\}$.", "revisions": [ { "version": "v2", "updated": "2024-05-14T20:18:24.000Z" } ], "analyses": { "subjects": [ "11K31", "11Y55", "68W30", "11-04" ], "keywords": [ "arithmetic progression", "concatenations", "linear difference operators", "construct explicit formulas", "basic concepts" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }