{ "id": "2201.06184", "version": "v2", "published": "2022-01-17T02:51:59.000Z", "updated": "2022-03-07T11:02:14.000Z", "title": "On the average value of $π(t)-\\text{li}(t)$", "authors": [ "Daniel R. Johnston" ], "comment": "11 pages; to appear in Canad. Math. Bull", "categories": [ "math.NT" ], "abstract": "We prove that the Riemann hypothesis is equivalent to the condition $\\int_{2}^x\\left(\\pi(t)-\\text{li}(t)\\right)\\mathrm{d}t<0$ for all $x>2$. Here, $\\pi(t)$ is the prime-counting function and $\\text{li}(t)$ is the logarithmic integral. This makes explicit a claim of Pintz (1991). Moreover, we prove an analogous result for the Chebyshev function $\\theta(t)$ and discuss the extent to which one can make related claims unconditionally.", "revisions": [ { "version": "v2", "updated": "2022-03-07T11:02:14.000Z" } ], "analyses": { "subjects": [ "11M26", "11N05" ], "keywords": [ "average value", "chebyshev function", "riemann hypothesis", "logarithmic integral", "prime-counting function" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }