{ "id": "2201.05407", "version": "v2", "published": "2022-01-14T11:58:58.000Z", "updated": "2022-08-15T12:24:56.000Z", "title": "An inverse problem for semilinear equations involving fractional Laplacian", "authors": [ "Pu-Zhao Kow", "Shiqi Ma", "Suman Kumar Sahoo" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We concern the study of inverse problems of heat and wave equations involving fractional Laplacian operator with zeroth order nonlinear perturbations. We recover nonlinear terms in the semilinear equations from the knowledge of the fractional Dirichlet-to-Neumann type map combined with the Runge approximation and the unique continuation property of fractional Laplacian.", "revisions": [ { "version": "v2", "updated": "2022-08-15T12:24:56.000Z" } ], "analyses": { "subjects": [ "35R11", "35R30", "46T20" ], "keywords": [ "semilinear equations", "inverse problem", "zeroth order nonlinear perturbations", "fractional dirichlet-to-neumann type map", "fractional laplacian operator" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }