{ "id": "2201.01998", "version": "v2", "published": "2022-01-06T10:16:35.000Z", "updated": "2022-04-13T03:57:07.000Z", "title": "Cellularity for weighted KLRW algebras of types $B$, $A^{(2)}$, $D^{(2)}$", "authors": [ "Andrew Mathas", "Daniel Tubbenhauer" ], "comment": "LaTeX file, 22 pages, revised version, comments welcome", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "This paper constructs homogeneous affine sandwich cellular bases of weighted KLRW algebras in types $B_{\\mathbb{Z}_{\\geq 0}}$, $A^{(2)}_{2\\cdot e}$, $D^{(2)}_{e+1}$. Our construction immediately gives homogeneous sandwich cellular bases for the finite dimensional quotients of these algebras. Since weighted KLRW algebras generalize KLR algebras, we also obtain bases and cellularity results for the (finite dimensional) KLR algebras.", "revisions": [ { "version": "v2", "updated": "2022-04-13T03:57:07.000Z" } ], "analyses": { "subjects": [ "16G99", "20C08", "20C30", "20G43" ], "keywords": [ "weighted klrw algebras", "affine sandwich cellular bases", "constructs homogeneous affine sandwich", "klrw algebras generalize klr", "algebras generalize klr algebras" ], "note": { "typesetting": "LaTeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }