{ "id": "2201.01268", "version": "v2", "published": "2022-01-04T18:04:53.000Z", "updated": "2023-09-20T09:08:05.000Z", "title": "Geometrical representation of subshifts for primitive substitutions", "authors": [ "Paul Mercat" ], "comment": "31 pages, 5 figures, preprint", "categories": [ "math.DS" ], "abstract": "For any primitive substitution whose Perron eigenvalue is Pisot unit, we construct a domain exchange measurably conjugated to the subshift. And we give a condition for the subshift to be a finite extension of a torus translation. For the particular case of weakly irreducible Pisot substitution, we show that the subshift is either a finite extension of a torus translation, either a power of the subshift is weakly mixing. And we provide an algorithm to compute eigenvalues of the subshift associated to any primitive pseudo-unimodular substitution.", "revisions": [ { "version": "v2", "updated": "2023-09-20T09:08:05.000Z" } ], "analyses": { "subjects": [ "37B10", "37A05" ], "keywords": [ "primitive substitution", "geometrical representation", "torus translation", "finite extension", "pisot unit" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }