{ "id": "2201.00611", "version": "v2", "published": "2022-01-03T12:56:27.000Z", "updated": "2022-04-28T09:59:37.000Z", "title": "Frequentist perspective on robust parameter estimation using the ensemble Kalman filter", "authors": [ "Sebastian Reich" ], "categories": [ "math.NA", "cs.NA", "math.ST", "stat.TH" ], "abstract": "Standard maximum likelihood or Bayesian approaches to parameter estimation of stochastic differential equations are not robust to perturbations in the continuous-in-time data. In this note, we give a rather elementary explanation of this observation in the context of continuous-time parameter estimation using an ensemble Kalman filter. We employ the frequentist perspective to shed new light on two robust estimation techniques; namely subsampling the data and rough path corrections. We illustrate our findings through a simple numerical experiment.", "revisions": [ { "version": "v2", "updated": "2022-04-28T09:59:37.000Z" } ], "analyses": { "subjects": [ "62L12", "62M20", "62F15", "60L90" ], "keywords": [ "ensemble kalman filter", "robust parameter estimation", "frequentist perspective", "standard maximum likelihood", "stochastic differential equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }