{ "id": "2201.00473", "version": "v2", "published": "2022-01-03T04:56:17.000Z", "updated": "2022-03-17T02:20:46.000Z", "title": "Determination of $\\textrm{GL}(3)$ cusp forms by central values of quadratic twisted $L$-functions", "authors": [ "Shenghao Hua", "Bingrong Huang" ], "comment": "23 pages. Incorporate the referees' comments and corrections, accepted in IMRN", "categories": [ "math.NT" ], "abstract": "Let $\\phi$ and $\\phi'$ be two $\\textrm{GL}(3)$ Hecke--Maass cusp forms. In this paper, we prove that $\\phi=\\phi'\\textrm{ or }\\widetilde{\\phi'}$ if there exists a nonzero constant $\\kappa$ such that $$L(\\frac{1}{2},\\phi\\otimes \\chi_{8d})=\\kappa L(\\frac{1}{2},\\phi'\\otimes \\chi_{8d})$$ for all positive odd square-free positive $d$. Here $\\widetilde{\\phi'}$ is dual form of $\\phi'$ and $\\chi_{8d}$ is the quadratic character $(\\frac{8d}{\\cdot})$. To prove this, we obtain asymptotic formulas for twisted first moment of central values of quadratic twisted $L$-functions on $\\textrm{GL}(3)$, which will have many other applications.", "revisions": [ { "version": "v2", "updated": "2022-03-17T02:20:46.000Z" } ], "analyses": { "keywords": [ "central values", "determination", "hecke-maass cusp forms", "positive odd square-free", "dual form" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }