{ "id": "2112.14816", "version": "v2", "published": "2021-12-29T20:26:14.000Z", "updated": "2022-03-26T15:23:02.000Z", "title": "On stability of determination of Riemann surface from its DN-map", "authors": [ "M. I. Belishev", "D. V. Korikov" ], "comment": "20 pages, 0 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "Suppose that $M$ is a Riemann surface with boundary $\\partial M$, $\\Lambda$ is its DN-map, and $\\mathscr E:M\\to\\mathbb{C}^{n}$ % $\\mathfrak{J}_{M}$ is a holomorphic immersion. Let $M'$ be diffeomorphic to $M$, $\\partial M=\\partial M'$; let $\\Lambda'$ be the DN map of $M'$. Let us write $M'\\in\\mathbb M_t$ if $\\parallel\\Lambda'-\\Lambda\\parallel_{H^{1}(\\partial M)\\to L_{2}(\\partial M)}\\leqslant t$ holds. We show that, for any holomorphic immersion $\\mathscr{E}: M \\to \\mathbb C^n$ ($n\\geqslant 1$), the relation \\begin{equation*} \\sup_{M'\\in \\mathbb{M}_{t}}\\inf_{\\mathscr{E}'}d_{H}(\\mathscr E'(M'),\\mathscr{E}(M))\\underset{t\\to 0}{\\longrightarrow}0, \\end{equation*} holds, where $d_H$ is the Haussdorf distance in $\\mathbb C^n$ and the infimum is taken over all holomorphic immersions $\\mathscr E': M'\\mapsto\\mathbb C^n$.", "revisions": [ { "version": "v2", "updated": "2022-03-26T15:23:02.000Z" } ], "analyses": { "subjects": [ "35R30", "46J15", "46J20", "30F15" ], "keywords": [ "riemann surface", "holomorphic immersion", "determination", "dn map", "haussdorf distance" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }