{ "id": "2112.14562", "version": "v2", "published": "2021-12-29T14:11:07.000Z", "updated": "2022-06-03T20:47:28.000Z", "title": "Polynomial effective density in quotients of $\\mathbb H^3$ and $\\mathbb H^2\\times\\mathbb H^2$", "authors": [ "Elon Lindenstrauss", "Amir Mohammadi" ], "comment": "76 pages", "categories": [ "math.DS", "math.GT", "math.MG" ], "abstract": "We prove effective density theorems, with a polynomial error rate, for orbits of the upper triangular subgroup of $\\operatorname{SL}_2(\\mathbb R)$ in arithmetic quotients of $\\operatorname{SL}_2(\\mathbb C)$ and $\\operatorname{SL}_2(\\mathbb R)\\times\\operatorname{SL}_2(\\mathbb R)$. The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.", "revisions": [ { "version": "v2", "updated": "2022-06-03T20:47:28.000Z" } ], "analyses": { "keywords": [ "polynomial effective density", "polynomial error rate", "upper triangular subgroup", "ambient space", "effective density theorems" ], "note": { "typesetting": "TeX", "pages": 76, "language": "en", "license": "arXiv", "status": "editable" } } }