{ "id": "2112.13656", "version": "v2", "published": "2021-12-17T16:45:29.000Z", "updated": "2022-02-10T15:35:40.000Z", "title": "Unitarily invariant Norms on Operators", "authors": [ "Jor-Ting Chan", "Chi-Kwong Li" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "Let $f$ be a symmetric norm on ${\\mathbb R}^n$ and let ${\\mathcal B}({\\mathcal H})$ be the set of all bounded linear operators on a Hilbert space ${\\mathcal H}$ of dimension at least $n$. Define a norm on ${\\mathcal B}({\\mathcal H})$ by $\\|A\\|_f = f(s_1(A), \\dots, s_n(A))$, where $s_k(A) = \\inf\\{\\|A-X\\|: X\\in {\\mathcal B}({\\mathcal H}) \\hbox{ has rank less than } k\\}$ is the $k$th singular value of $A$. Basic properties of the norm $\\|\\cdot\\|_f$ are obtained including some norm inequalities and characterization of the equality case. Geometric properties of the unit ball of the norm are obtained; the results are used to determine the structure of maps $L$ satisfying $\\|L(A)-L(B)\\|_f=\\|A - B\\|_f$ for any $A, B \\in {\\mathcal B}({\\mathcal H})$.", "revisions": [ { "version": "v2", "updated": "2022-02-10T15:35:40.000Z" } ], "analyses": { "subjects": [ "15A04", "15A60", "47B48" ], "keywords": [ "unitarily invariant norms", "th singular value", "symmetric norm", "geometric properties", "equality case" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }