{ "id": "2112.13524", "version": "v1", "published": "2021-12-27T05:45:16.000Z", "updated": "2021-12-27T05:45:16.000Z", "title": "Whittaker category for the Lie algebra of polynomial vector fields", "authors": [ "Yufang Zhao", "Genqiang Liu" ], "journal": "Journal of Algebra2022", "doi": "10.1016/j.jalgebra.2022.04.025", "categories": [ "math.RT", "math.RA" ], "abstract": "For any positive integer $n$, let $A_n=\\mathbb{C}[t_1,\\dots,t_n]$, $W_n=\\text{Der}(A_n)$ and $\\Delta_n=\\text{Span}\\{\\frac{\\partial}{\\partial{t_1}},\\dots,\\frac{\\partial}{\\partial{t_n}}\\}$. Then $(W_n, \\Delta_n)$ is a Whittaker pair. A $W_n$-module $M$ on which $\\Delta_n$ operates locally finite is called a Whittaker module. We show that each block $\\Omega_{\\mathbf{a}}^{\\widetilde{W}}$ of the category of $(A_n,W_n)$-Whittaker modules with finite dimensional Whittaker vector spaces is equivalent to the category of finite dimensional modules over $L_n$, where $L_n$ is the Lie subalgebra of $W_n$ consisting of vector fields vanishing at the origin. As a corollary, we classify all simple non-singular Whittaker $W_n$-modules with finite dimensional Whittaker vector spaces using $\\mathfrak{gl}_n$-modules. We also obtain an analogue of Skryabin's equivalence for the non-singular block $\\Omega_{\\mathbf{a}}^W$.", "revisions": [ { "version": "v1", "updated": "2021-12-27T05:45:16.000Z" } ], "analyses": { "subjects": [ "17B10", "17B15", "17B65" ], "keywords": [ "polynomial vector fields", "finite dimensional whittaker vector spaces", "lie algebra", "whittaker category" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }