{ "id": "2112.11278", "version": "v3", "published": "2021-12-21T15:05:04.000Z", "updated": "2022-10-23T18:51:54.000Z", "title": "Asymptotic $N$-soliton-like solutions of the fractional Korteweg-de Vries equation", "authors": [ "Arnaud Eychenne" ], "categories": [ "math.AP" ], "abstract": "We construct $N$-soliton solutions for the fractional Korteweg-de Vries (fKdV) equation $$ \\partial_t u - \\partial_x\\left(|D|^{\\alpha}u - u^2 \\right)=0, $$ in the whole sub-critical range $\\alpha \\in]\\frac12,2[$. More precisely, if $Q_c$ denotes the ground state solution associated to fKdV evolving with velocity $c$, then given $0