{ "id": "2112.09352", "version": "v2", "published": "2021-12-17T07:05:29.000Z", "updated": "2023-06-20T17:22:39.000Z", "title": "Additive energies on discrete cubes", "authors": [ "Jaume de Dios Pont", "Rachel Greenfeld", "Paata Ivanisvili", "José Madrid" ], "comment": "16 pages, 3 figures", "categories": [ "math.CO", "math.CA" ], "abstract": "We prove that for $d\\geq 0$ and $k\\geq 2$, for any subset $A$ of a discrete cube $\\{0,1\\}^d$, the $k-$higher energy of $A$ (the number of $2k-$tuples $(a_1,a_2,\\dots,a_{2k})$ in $A^{2k}$ with $a_1-a_2=a_3-a_4=\\dots=a_{2k-1}-a_{2k}$) is at most $|A|^{\\log_{2}(2^k+2)}$, and $\\log_{2}(2^k+2)$ is the best possible exponent. We also show that if $d\\geq 0$ and $2\\leq k\\leq 10$, for any subset $A$ of a discrete cube $\\{0,1\\}^d$, the $k-$additive energy of $A$ (the number of $2k-$tuples $(a_1,a_2,\\dots,a_{2k})$ in $A^{2k}$ with $a_1+a_2+\\dots+a_k=a_{k+1}+a_{k+2}+\\dots+a_{2k}$) is at most $|A|^{\\log_2{ \\binom{2k}{k}}}$, and $\\log_2{ \\binom{2k}{k}}$ is the best possible exponent. We discuss the analogous problems for the sets $\\{0,1,\\dots,n\\}^d$ for $n\\geq 2$.", "revisions": [ { "version": "v2", "updated": "2023-06-20T17:22:39.000Z" } ], "analyses": { "subjects": [ "11B30" ], "keywords": [ "discrete cube", "additive energy", "higher energy", "analogous problems" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }