{ "id": "2112.08249", "version": "v2", "published": "2021-12-15T16:27:58.000Z", "updated": "2022-11-07T19:35:59.000Z", "title": "New estimates on the size of $(α,2α)$-Furstenberg sets", "authors": [ "Daniel Di Benedetto", "Joshua Zahl" ], "comment": "28 pages, 1 figure. v2: revised based on referee comments; results are unchanged", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We use recent advances on the discretized sum-product problem to obtain new bounds on the Hausdorff dimension of planar $(\\alpha,2\\alpha)$-Fursterberg sets. This provides a quantitative improvement to the $2\\alpha+\\epsilon$ bound of H\\'era-Shmerkin-Yavicoli. In particular, we show that every $1/2$-Furstenberg set has dimension at least $1 + 1/4536$.", "revisions": [ { "version": "v2", "updated": "2022-11-07T19:35:59.000Z" } ], "analyses": { "keywords": [ "furstenberg set", "hausdorff dimension", "discretized sum-product problem", "fursterberg sets", "quantitative improvement" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }