{ "id": "2112.08053", "version": "v1", "published": "2021-12-15T11:41:12.000Z", "updated": "2021-12-15T11:41:12.000Z", "title": "Discrete analog of the Jacobi set for vector fields", "authors": [ "A. N. Adilkhanov", "A. V. Pavlov", "I. A. Taimanov" ], "comment": "12 pages", "journal": "Computational Topology in Image Context, 1-11, Lecture Notes in Comput. Sci., 11382, Springer, Cham, 2019", "doi": "10.1007/978-3-030-10828-1_1", "categories": [ "math.CA", "math.GT" ], "abstract": "The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.", "revisions": [ { "version": "v1", "updated": "2021-12-15T11:41:12.000Z" } ], "analyses": { "keywords": [ "discrete analog", "piecewise linear jacobi set", "general vector fields", "definition generalizes", "mutual behavior" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }