{ "id": "2112.07094", "version": "v3", "published": "2021-12-14T01:22:11.000Z", "updated": "2022-02-18T00:10:47.000Z", "title": "Homomorphisms to $\\mathbb{R}$ of automorphism groups of zero entropy shifts", "authors": [ "Omer Tamuz" ], "comment": "10 pages. Minor corrections with respect to the previous version", "categories": [ "math.DS", "math.GR" ], "abstract": "We show that the automorphism group of every zero entropy infinite shift admits a \"drift\" homomorphism to $(\\mathbb{R},+)$ that maps the shift map to 1. This homomorphism arises as the expectation, under an invariant measure, of a cocycle defined on a space of asymptotic pairs.", "revisions": [ { "version": "v3", "updated": "2022-02-18T00:10:47.000Z" } ], "analyses": { "keywords": [ "zero entropy shifts", "automorphism group", "zero entropy infinite shift admits", "homomorphism arises", "asymptotic pairs" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }