{ "id": "2112.05004", "version": "v2", "published": "2021-12-09T15:58:04.000Z", "updated": "2022-05-16T05:20:39.000Z", "title": "Explicit Bounds for Linear Forms in the Exponentials of Algebraic Numbers", "authors": [ "Cheng-Chao Huang" ], "categories": [ "math.NT", "cs.CC", "cs.SC" ], "abstract": "In this paper, we study linear forms \\[\\lambda = \\beta_1\\mathrm{e}^{\\alpha_1}+\\cdots+\\beta_m\\mathrm{e}^{\\alpha_m},\\] where $\\alpha_i$ and $\\beta_i$ are algebraic numbers. An explicit lower bound for the absolute value of $\\lambda$ is proved, which is derived from \"th\\'eor\\`eme de Lindemann--Weierstrass effectif\" via constructive methods in algebraic computation. Besides, the existence of $\\lambda$ with an explicit upper bound is established on the result of counting algebraic numbers.", "revisions": [ { "version": "v2", "updated": "2022-05-16T05:20:39.000Z" } ], "analyses": { "keywords": [ "explicit bounds", "exponentials", "explicit upper bound", "study linear forms", "explicit lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }